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Abstract 
 
After a short introduction of the deterministic SIS and SIR models, we present three types of stochastic epidemic 
models: discrete times Markov chain (DTMC) model, continuous times Markov chain (CTMC) model and stochastic 
differential equation (SDE) model. We discuss a stochastic epidemic model for dynamic of infectious diseases with 
variable population size, one which varies according to some population growth laws. Finally, we compare the 
stochastic differential equation of a SIS epidemic model having a constant population size with a stochastic 
differential equation having a variable population size. 
 
Keywords: model basic reproduction number, discrete times Markov chain (DTMC) model, continuous times 
Markov chain (CTMC) model and stochastic differential equation (SDE) model 
 
 

INTRODUCTION  
 

The beginnings of mathematical applications in 
epidemiology relate to the “smallpox” model, by 
Daniel Bernoulli (1760) and a primary theory was 
developed between 1900-1935. The research 
continued and recent progresses recorded in our 
days, a good example being "The SARS" (Severe 
Acute Respiratory Syndrome) epidemic (2002-
2003). Establishing forecasts on the evolution of 
infectious disease and the comparison of different 
control methods maintain at a high level the interest 
of researchers in mathematical modeling of 
epidemiology. 
 
 
MATERIAL AND METHOD  
 
1. The deterministic SIS and SIR Epidemic 
Models 
Most epidemic models are based on the dividing of 
target population into a small number of 
compartments, each of them containing members 
that are identical in terms of their relationship 
towards a certain disease. 
In a SIR model, the population is divided into three 
groups: 

a) S - susceptible: individuals who don’t have 
immunity to infectious agents and who have 
been exposed to the disease contact; 

b) I - infected: individuals who have been recently 
infected and who transmit the infection to 
susceptible individuals who are in contact with 
them; 

c) R- removed: individuals who are immune to 
the infection and who are not contaminated 
even if they come in contact with those 
categories a), b). 

An example of SIR Epidemic Model is represented 
by childhood diseases. 
         If we denote , ,S t I t R t , the number of 
individuals in each category in relation to time, the 
total population will be: 
N t S t I t R t    

                           (1)                     
 
We observe that , ,S t I t R t N and for a 
sufficiently large volume of the total population, 
they are continuous random variables, their 
variation is characterized by the following system 
of differential equations: 
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dS S I b I R
dt N
dI S I b I
dt N

dR I b R
dt

                        (2)                                                           

where 0 is the transmission rate, 0 is the 
recover rate and 0b  is the birth rate. 
The initial solution of the system (1) is:   

0 0, 0 0, 0 0

, 0 0 0

S I R

S I R N
                         (3) 

where 0N N is the population volume at the 
initial moment, when it downgraded the epidemic.  
 
Observation: 
If we note c , the death rate, we assume that in a 
SIR model,b c  i.e. the birth rate is equal with the 
death rate,  then the population volume is constant 

with respect to time, and 0dN
dt

. 

Using the basic reproduction number, 

0R b
, which represents the number of 

secondary infections caused by some infected 
individuals in the entire susceptible population (the 

fraction 
1

b
is the interval of infection relative to 

deaths and recovery rate ) the authorsJ. Mena-
Lorca, H.W. Hethcote [6] characterize the system 
solution (2), in the following theorem: 
 
 
Theorem 1 
If , ,S t I t R t  is the system solution (2), then: 

a)  for 0 1, lim 0
t

R I t  (disease-free 

equilibrium) 

b) for 

0

0 0 0

1, lim ( , , )

1 1, 1 , 1

t
R S t I t R t

N b N N
R b R b R

 

(endemic equilibrium) 

c) for 0b  and 0

0
1

S
R

N
, there is an 

initial increase of the number of infected 

cases I t  and if 0

0
1

S
R

N
, then 

I t  monotone decreasing. 

In a SIS Epidemic Model, a susceptible individual, 
after contact with an infected person in his turn 
becomes infected or infectious, but he doesn’t 
develop immunity, i.e., after recovery,  he returns in 
the susceptible category, so in such a model, the 
population is divided only into two categories: S-
susceptible and I-infectious. 
An example of a SIS Epidemic Model is 
represented sexually transmitted diseases (STDs). 
With the same notations as in the SIR epidemic 
model and if we assume that all individuals are born 
susceptible and we don’t find the deaths caused by 
that epidemic, the dynamics of the SIS epidemic 
model is described by the following system of 

differential equations:

dS S I b I
dt N
dI S I b I
dt N

  

(4)                     
 In this case, the population size is:  
N t S t I t                                           (5)                        
 
Observation: 
If we assume as in the case of the SIR model b c ,  
then in a SIS epidemic model the population size is 

constant with respect to time, i.e. 0dN
dt

. The 

following theorem [6] characterizes the system 
dynamics model of differential equations (4) in 
relation to the variation of the basic reproduction 
number: 
 
 
Theorem 2 
If ,S t I t  is the system solution (4), then: 

a) for 0 1, lim , ,0
t

R S t I t N  (disease-

free equilibrium) 
b) for 

0
0 0

11, lim ( , ) , 1
t

NR S t I t N
R R

 

(endemic equilibrium) 
Observation: 
The interpretation of the first statements of the 
theorem is that if the number of secondary 
infections generated by the infected individuals is 
less than 1, then, 0I t si S t N . 
 
 
2. The Stochastic Epidemic Models 
In this section we present three types of stochastic 
modeling processes: (1) a discrete time Markov 
chain (DTMC) model, (2) a continuous time 
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Markov chain (CTMC) model, and (3) a stochastic 
differential equation (SDE) model. The differences 
between these processes refer to time and to the set 
of states. In DTMC model, the time and the state 
are random discrete variables. In a CTMC model, 
time is continuous, but the state variable is discrete, 
finally, the SDE model is based on a diffusion 
process, where both the time and the state variables 
are continuous. One of the most important 
differences between the deterministic and stochastic 
epidemic models is their asymptotic dynamics. 
Eventually stochastic solutions (sample paths) 
converge to the disease-free state even though the 
corresponding deterministic solution converges to 
an endemic equilibrium.  
 
 
2.1. Discrete Time Markov Chain Epidemic 
Models (DTMC) 
Let on consider , ,S t I t R t  random variables 
representing the number of individuals susceptible, 
infected, respectively immune to the time t, in 
relation to a specific infectious agent. 
 In a DTMC epidemic model, 

0, ,2 ,...t T t t and the discrete 

variables , , 0,1,...S t I t R t N . 
          Further, we refer to a SIS Epidemic Model. 
We consider that N  the population size is 
constant and I t is independent random variable. 

Then S t N I t  and the stochastic 

process
t T

I t has the probability function  

, 0,ip t P I t i i N t T , 

1
1

N

i
i

p t                                                        (6) 

If 0 1, ,...,
T

np t p t p t p t  is the 
probability vector associated of stochastic process 

t T
I t , then the process has the Markov 

property: 
0 , ,...P I t t I I t I t

P I t t I t
             (7)                               

i.e. the process state (the number of infected 
individuals) at the moment t t , depends only on 
the process state at the moment t. 
The probability of transition from the state I t i , 

to the state I t t j  is given by relationship: 

,jip t t t P I t t j I t i       (8) 

Observation: 
 If t is a sufficiently small interval, the process 
I t  can move from the state 

1i i , 1i i or i i , i.e. the number of 
infected people can grow with one, or can be a 
birth, a death or a cure. In this case, the transition 
probabilities verify the relationships: 

, 1

, 1

1 ,

0, 1, , 1

ij

i N i
t j i

N
b i t j i

p t
i N i

b i t j i
N

j i i i

                    

(9) 
 
The relations which are above can be interpreted as 
follows:  

 probability of the occurrence of another 
infected person in an interval t , 

( 1i i ) is 
i N i

t
N

, 

 probability of the occurrence of death or 
recover ( 1i i ) in an interval t is 
b i t , 

 probability that not occur any change in state 
( i i )in an interval t is 

1
i N i

b i t
N

. 

        So that the population size remains constant as 
with the deterministic case, b c meaning the birth 
rate must be equal to the death rate. 
 
Observation 
If a SIS epidemic model (DTMC) is seen as a 
process of birth and death, then the system (9) can 
be written more simple: 

( ) , 1
( ) , 1

1 ( ) ( ) ,
0, 1, , 1

ij

b i t j i
d i t j i

p t
b i t d i t j i

j i i i

                    

(10) 
with ( )b i t  it noted the probability of new 
infections and the probability of death or recover 

( )d i t . If we apply the previous transition 
probabilities the Markov property, then 

ip t t can be expressed in terms of 
probabilities at the time t : 

87



 

1

1

1

1 1 ( ) ( )
i i

i i

p t t p t b i t

p t d i t p t b i t d i t
                                                                          (11) 
where 

1, , ,
i N i

i N b i d i b i
N

. 

 
 
2.2 Continuous Time Markov Chain Epidemic 
Models (CTMC) 
In a CTMC process, time is a continuous random 
variable, 0,t and 

, , 0,1,...,S t I t R t N  are discrete 
random variables. 
Further we characterize a CTMC SIS epidemic 
model. The vector of probability functions 
associated to stochastic process 

0,t
I t  is 

0 1, ,...,
T

np t p t p t p t                                               
(12) 

with , 0,ip t P I t i i N  
The process has the Markov property: 

1 0 1,...n n n nP I t I t I t P I t I t ,                                      

(13) 

0 10 ... n nt t t  
The previous relationship indicates that the 
transition probability at the time 1nt  depends only 

on the state of the process at the time nt . If in a 
DTMC, the transition probability refers to a short 
period of time t , in the transition probabilities 
related CTMC process is included the term t , 
with the property : 

lim 0
t

t
t

                                               (14)                                                                 

The infinitesimal transition probabilities are defined 
as: 

, 1

, 1

1 ,

, 1, , 1

ji

i N i
t t j i

N
b i t t j i

p t i N i
b i t t j i

N
t j i i i

                  

(15) 
As t  is sufficiently small, there are three 
possibilities for mood swings: 

1i i , 1i i or i i . With the same 

notations as in the case of a DTMC process, the 
formulas (15) become:                     

( ) , 1
( ) , 1

1 ( ) ( ) ,
, 1, , 1

ji

b i t t j i
d i t t j i

p t
b i t d i t t j i

t j i i i

                    

(16) 
If we apply the Markov property to the previous 
transition probability and given that  

00 1P I i , then ip t t  can be 
expressed in terms of probabilities at the time t : 

1 11 1

1 ( ) ( )
i i i

i

p t t p t b i t p t d i t

p t b i t d i t t
 

 
 
2.3. The Stochastic Differential Equations 
Epidemic Models (SDE) 
In a stochastic SDE epidemic model, time is a 
continuous random variable with 

0,T and , ,S t I t R t  are also 
continuous random variables, with the state-space 
interval 0, N . Further we will stop to a SIS 
stochastic epidemic model. The stochastic process 

0,t
I t  represents the number of individuals 

affected with respect to time. The random va-
riable I t  has the probability density ,p x t  and                     

,
b

a

P a I t b p x t dx . 

 The process
0,t

I t has the Markov property: 

0 1 1

1

, ,...n n

n n

P I t y I t I t I t

P I t y I t
              

(17) 

0 10 ... n nt t t T , and the transition 
probability density is 

, ; ,p y t t x t ,I t x I t t y                     
(18) 

In the paper [1], it is shown that a construction of 
SDE SIS model epidemic, starting from the CTMC 
SIS epidemic model. 
 
 
RESULTS AND DISCUSSIONS 
 
We assume that N - population size is not constant, 
but it varies in relation to the law of population 
growth. Formulation of an epidemic model requires 
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that the birth and death rates, which depend on 
population size. 
 
We suppose that the birth rate is: 

N b N                                              (19)                                                                         
and the death rate: 

2NN b
k

                                                (20)                                                           

where 0k is the carrying capacity. Then,the 
number N checks differential equation: 

1dN NN N bN
dt k

              (21)                               

 
According to [2] there are many forms of birth rates 
and death choice, depending on population 
dynamics that will be modeled. If we assume that 
the population size checks the differential equation 
(21), then a deterministic SIS epidemic model can 
be characterized by the system of differential 
equations:      

dS S N N S I b I
dt N N

dI I N S I I
dt N N

                                                 

(22) 
with 0 0S  and 0 0I . 
 
The previous system solution depends on the basic 

reproduction number 0R
b

. 

 
         Next, we formulate a stochastic model of type 
EDS SIS solution and we compare it with the 
deterministic model [1], [2]. Let us consider 

,S t I t  variables representing the number of 
individuals susceptible, infected respectively at 
time t. Obviously S t I t N t  and 

, 0,S t I t . If we apply the same method 
as for the model SDE SIS epidemic model, we 
obtain the system of differential equations      
 
         In [4] Brauer, F., Driessche P present a graph 
of a SDE SIS epidemic model (a) with constant 
population size, N = 100 and (b) with variable 
population size, N(t). The parameter values are  = 
1,  = 0.25 = b, K = 100, and 0 2R  

 
 
 

 
 
 
CONCLUSIONS  

In many cases these three stochastic formulations 
generate similar results, if the time step t is small 
[2]. There are numerical advantages in applying the 
discrete time approximations (DTMC model) in 
that the discrete simulations generally have a 
shorter computational time than the CTMC model. 
Mode and Sleeman [7] discuss some computational 
methods in stochastic processes in epidemiology. 
The most important consideration in modeling, 
however, is to choose a model that best represents 
the demographics and epidemiology of the 
population being modeled. 
         In the future we plan to continue studying to 
application of stochastic modeling in epidemiology 
to determine the final number of individuals of a 
population affected by an infectious agent but also 
for estimating the duration of an epidemic 

89



 

REFERENCES 

Allen, E. J. 1999. Stochastic differential equations and 
persistence time for two interacting populations.Dyn. 
Contin. Discrete Impulsive Syst., 271–281. 
Allen, L. J. S., Allen, E. J, 2003. A comparison of three 
different stochastic population models with regard to 
persistence time. Theor. Popul. Biol., 439–449. 
Allen, L. J. S., Burgin, A. M, 2000. Comparison of 
deterministic and stochastic SIS and SIR models in 
discrete time. Math. Biosci., 1–33.  

Brauer, F., Driessche P.2008.Mathematical 
Epidemiology, Springer, 81-120. 
Isham, V., 1991.Assessing the variability of stochastic 
epidemics. Math. Biosci., 209–224. 
J. Mena-Lorca, H.W. Hethcote, 1992. Dynamic models 
of infectious diseases as regulators of population size. J. 
Math. Biol., 693–716 . 
Mode, C. J., Sleeman, C. K.2000: Stochastic Processes in 
Epidemiology. HIV/AIDS, Other Infectious Diseases and 
Computers. World Scientific, Singapore. 

 

90


