CLASSIC VERSUS MODERN TOOLS TO STUDY MICROBIAL POPULATION DYNAMICS DURING FOOD FERMENTATION PROCESSES

Virgil VRĂJMAȘU, Camelia Filofteia DIGUȚĂ, Florentina MATEI

University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăști Blvd., District 1, Bucharest, Romania

Corresponding author email: virgilvrajmasu@yahoo.com

Abstract

For a better understanding of microbial processes and dynamics of microbial population in fermented food is essential the taxonomical definition of their content. It is difficult to estimate true microbial diversity due to inability to cultivate most of the viable bacteria or to evaluate stressed cells. The most appropriate approach it seems to be the integration of phenotypic and genotyping data, while the molecular methods alone are not enough to establish distinct boundaries among phyllogenetically related species. It is important for identification of microbial strains to connect physiological, morphological and biochemical features as well as the aspects of its genetic profile. The most common genotypic and phenotypic methods are reviewed in this paper, highlighting on the suitable techniques which can be used to differentiate among microbial strains.

Key words: molecular techniques, food fermentation, genotyping, phenotyping.

INTRODUCTION

Fermentation is a metabolic process in which an organism converts a carbohydrate, such as starch or sugar, into an alcohol or an acid. For example, the yeast performs fermentation to obtain energy by converting sugar into alcohol. Lactic bacteria perform fermentation, transforming carbohydrates into lactic acid. This process is used to produce wine, beer, yogurt and other products.

Fermentation is a natural process. People have been fermenting to produce products like wine, honey, cheese and beer long before the biochemical process is understood. In the 1850s Louis Pasteur became the first scientist to study fermentation when it was shown to be caused by living cells.

The most important fermentations involved in food production are alcoholic fermentation, lactic fermentation and acetic fermentation. In the alcoholic fermentation yeast and certain bacteria perform the fermentation of carbohydrates in which pyruvic acid is broken into ethanol and carbon dioxide; this process is specific to bread, wine or beer production.

In the lactic fermentation, the lactose is converted through pyruvic acid in lactic acid. This type of fermentation is used for the production of cheese and dairy products. Acetic fermentation is another type of fermentation and is produced by acetic bacteria, and as an intermediate product results acetic acid.

By the acetic fermentation of the wine we get the vinegar. Acetic fermentation is also used to conserve pickles. Although it is considered fermentation, it is carried out in the presence of oxygen.

During these fermentations, which are conducted on natural sources of carbohydrates (grapes, milk, cereals etc.), the microbial biodiversity and levels are in a continuous changing.

To get the best final product it is important to conduct an optimal fermentation process, in which the microorganisms involved are an important factor.

To characterize the fermentation microbial biodiversity the approach is complex and should be taken into account phenotypic and genotypic methods and to establish correlation between the results of these methods (Girafa et al., 2004; Cocolin et al., 2013; Donelli et al., 2013; Matei et al., 2018).

In the following will be presented both the phenotypic and genotypic tools useful in characterizing the microbial diversity and levels.

MATERIALS AND METHODS

Online information research was conducted by the use of different database collections and onsearching engines (Google Academic, Web of Knowledge, PubMed and ScienceDirect). The information has been structured according to the approach used in the characterization of the microbial diversity.

RESULTS AND DISCUSSIONS

Phenotypic studies have been broadly used during years, this is why the presented data will mainly focus on the molecular tools used in the characterization of microbial biodiversity during food fermentations.

(1) Phenotypic methods

Phenotypic characterization of microbial strains is based on data supplied by all the typing methods not based on DNA or RNA, including chemotaxonomic methods that are able to give information on chemical constituents of microbial cells. Thus, the classical phenotypic tests are important sources of taxa, from species up to genus and family. In many cases the set of all the morphological, physiological and biochemical features of a strains allows the recognition of taxa. These phenotypic characteristics in specific microbial groups, such as lactobacilli and bifidobacteria, are not enough to completely describe or differentiate taxa and must be performed in addition to genotypic analysis (Tannock, 1999; Mastromarino et al., 2002)

The morphological investigation of а microorganism both by light and electron microscopy provides information on cell shape, flagella and inclusion bodies while color, dimension and form of its colonies are detected macroscopically on a suitable agar plate. Physiological data useful for classification purposes include growth temperature, pH value. salt concentration and oxygen requirement whereas biochemical features of interest include enzymatic activity. gas production and compound metabolism (Yang et al., 2010; Nomura et al., 1999).

For rapid phenotypic characterisation in practice are used API stripes, which are test kits for identification of Gram positive and Gram negative bacteria and yeast produced by Biomerieux company. The system offers a large and robust database now accessible through the Internet-based APIWEB[™] service. According to the most common protocols. carbohydrate fermentation analysis for lactobacilli is carried out using API 50 CH, a research strip that enables the study of the metabolism of 49 carbohydrates and is able to identify Lactobacillus species within 48 hours. However, some epidemiological studies have reported shortcomings in the use of this methodology due to the possibility of identifying lactobacilli belonging to different species as the same microorganism (Vasquez et al., 2002), thus fermentative profile seems to be inaccurate method for identification and classification of Lactobacillus species which therefore needs to be performed additional genotypic analysis (Pavlova et al., 2002).

FAME (fatty acid methyl esters) analysis (Miller, 1982) has been successful used since fatty acids are the major constituent of lipids and lipopolysaccharides in microbial cells and have been used for taxonomic purposes. In fact, more than 300 different chemical structures of fatty acids and their variability in chain length, double-bond position and substituent groups has been very useful for the characterization of bacterial taxa (Suzuki et al., 1993). This is a cheap and rapid method with high degree of automation that was recently used to investigate the diversity of 94 L. reuteri isolates (Hilmi Hanan et al., 2007).

(2) Genotypic methods

The application of molecular biology methods has greatly improved the bacterial identification and classification, by genotyping directed toward to DNA or RNA molecules.

The currently available molecular-based typing methods are mainly based on restriction analysis of the bacterial DNA, polymerase chain reaction (PCR) amplification of specific targets and identification of DNA sequence polymorphisms. Table 1 presents the use of different molecular tools in the characterization of microbial dynamic during fermentation.

Random Amplification of Polimorphic DNA (**RAPD-PCR**) is a PCR method based on segments of DNA that are amplified randomly, for the identification of the genetic variation; by the use of a single arbitrary primer in a PCR reaction is resulting the amplification of many DNA products. This procedure detects nucleotide sequence polymorphisms in a DNA amplification-based assay using only a single primer of arbitrary nucleotide sequence. In this reaction, a single species of primer binds to the genomic DNA at two different sites on opposite strands of the DNA template. If these priming sites are within an amplifiable distance of each other, a discrete DNA product is produced through thermocylic amplification. RAPD-PCR method was used to differentiate between probiotic Lactobacillus in wine (Plessas et al., 2017). identifying Oenococccus oeni. Leuconostoc mesenteroides in wine (Ruiz et al., 2008; Lucena-Padros et al., 2014); genotypes have been found in olive fermentations of L. paracollinoides, pentosus, L. L. rapi, Pediococcus sp., Staphylococcus sp., Candida thaimueangensis, S. cerevisiae, Hanseniaspora sp. (Lucena-Padros et al., 2014), bio-typing of Lactobacillus sakei, L.paracasei, L.curvatus, L. L. fermentum plantarum, in traditional fermented sausage (Tremonte et al., 2017; Pisacone et al., 2015), characterization of L. brevis, L. plantarum, L. pentosus, L. fermentum eggplant (Sesena in et al.. 2005). characterization of Weissella sp., Pediococcus sp, Lactococcus sp., Lactobacillus in Mexican fermented beverage (Väkeväinen et al., 2018), rapid identification of L. casei, L paracasei, L. plantarum, L. rhamnosus, L. helveticus, L. fermentum, L. hrevis. *Streptococcus* thermophilus, Enterococcus faecalis, Lactococcus lactis in dairy (Rossetti et al., 2005) and identification of L. plantarum, L. sanfranciscensis, Leuconostoc mesenteroides, L. fermentum, Weissella cibaria, L. pentosus, L. hrevis. L. paraplantarum in sourdough fermentation (Rizzello et al., 2014). Limitations of the method are: mismatches between the primer and the template may result in the total absence of PCR product, RAPD-PCR is an enzymatic reaction, therefore, the quality and concentration of template DNA. concentrations of PCR components, and the PCR cycling conditions may greatly influence the outcome.

PCR-denaturing gradient gel electrophoresis (**PCR-DGGE**) is the most worldwide used molecular method, being introduced approximately 25 years ago. These techniques consist of amplification of the genes encoding the 16S rRNA from the matrix containing different bacterial populations, followed by separation of the DNA fragments on gel electrophoresis, molecules with different number of pair base will migrate on different position generating a patterns which can provide a preliminary view of predominant species. PCR-DGGE has been a useful method identification of Lactobacillus for *sp.*. Yarrowia lipolytica, Debaryomyces hansenii, Rhodotorula mucilaginosa, Candida stellata, S.cerevisiae. L. curvatus. L. plantarum. S. xvlosus in Ciauscolo, a traditional Italian salami (Silvestri et al., 2007; Aquilanti et al., 2007), identification and characterization of Lactobacillus sanfranciscensis, Candida milleri, Sacharomyces cerevisiae, in sourdough (Palla et al., 2017), for detection of Aspergillus niger, Botrytis cinerea. Hanseniaspora uvarum, S. cerevisiae, C. stelatta, Leuconostoc mesenteroides. O. oeni, S. cerevisiae (Andorra et al., 2010; Perez-Martin et al., 2014; Portillo et al., 2016), identification of Leuconostoc mesenteroides, Tetragenococcus halophylus, Enterococcus farcium, Enterococcus faecium, B. subtilis, B. licheniformis, Mucor plumbeus, Aspergillus oryzae, Debaromyces hansenii, in soybean paste (Kim et al., 2009; Do Ham et al., 2012) and characterization of L. sakei, L. paracasei, L. curvatus, L. plantarum, L. fermentum, S. xylosus, S. saprophyticus, S. pasteuri, S. epidermis, S. simulans, S. equorum in traditional sausage (Pisacane et al., 2015; Fonseca et al., 2013). This method requires long time to be performed, works well only with short fragments less than 600 bp, thus limiting phylogenetic characterization, results difficult to reproduce between gels and laboratories.

Real-Time qPCR method is using primers pair specific for a desired targeted sequence and internal probe, labelled with fluorescent dye, with each amplification cycle, the fluorescence intensity is increasing, which is collected by the instrument system. The cycle number at which an amplification plot crosses this threshold fluorescence level is called the "Ct" or threshold cycle. This Ct value can be directly correlated to the starting target concentration of the sample. This method has been used for the detection of *Streptococcus thermophilus* and

Lactococcus lactis in dairy (Pega et al., 2017), detection of A. niger, Botrytis cinerea,

Table 1. Method used to describe th	e dynamic of microbial	population in different food matrix

Method/Matrix	Microorganism	References
PCR-DGGE		
Italian salami	Lactobacillus sp., Yarrowia lipolytica, Debaryomyces hansenii, Rhodotorula mucilaginosa, Candida stellata, S. cerevisiae, L. curvatus, L. plantarum, S. xylosus	Plessas et al., 2017 Aquilanti et al., 2007
Sourdough	Lactobacillus sanfranciscensis, Candida milleri, Sacharomyces cerevisiae	Palla et al., 2017
Wine	Aspergillus niger, Botrytis cinirea, Hanseniaspora uvarum, S. cerevisiae, C. stelatta	Andorra et al., 2010
Cocoa bean Sorghum	L. plantarum, L. fermentum, Acetobacter pasteurianus Lactococcus lactis, Weissella cibaria, L. curvatus, Enterobacter sp.	Lefeber et al., 2011 Madoroba et al., 2011
Sausage Cassava dough	L. sakei, L. plantarum, Weissella hellenica, Leuconostoc mesenteroides L. plantarum, L. fermentum, L. pentosus, L. case, L. acidophilus	Tremonte et al., 2017 Oguntoyinbo et al., 2010
Shenqu	Pediococcus acidilactis, Rhizopus sp., Aspergillus oryzae, Enterobacter sp., Klebsiella sp., Erwinia sp. Pantoea vagan	Lin et al., 2017
Wine	Erwinia sp., Pantoea vagan Gluconobacter sp., Acetobacter sp., Gluconoacetobacter sp., Bifidobacterium sp., Henseningen and Stachensensen pr. Conditions	Portillo et al., 2016
Soybean paste	Hanseniaspora sp., Sacharomyces sp., Candida sp. Leuconostoc mesenteroides, Tetragenococcus halophylus, Enterococcus farcium, Extensione of activity of the Philip Philip and Magnaphylus have been been at the second seco	Kim et al., 2009
Traditional sausage	Enterococcus faecium, B. subtilis, B. licheniformis, Mucor plumbeus Aspergillus oryzae, Debaromyces hansenii, L. sakei, L. paracasei, L. curvatus, L. plantarum, L. fermentum, S. xylosus, S. saprophyticus, S. pasteuri, S. epidermis, S. simulans, S. equorum	Do Ham et al., 2012 Pisacane et al., 2015 Fonseca et al., 2013
Wine	Leuconostoc mesenteroides, O. oeni, S. cerevisiae	Perez-Martin et al., 2014
Chinese liquor	Methanocorpusculum sp., Methanobrevibacter sp., L. acetotolerans, L. alimentarius, Clostridium kluyveri, Clostridium sartagoforme, Methanobacterium sp., Methanoculleus sp.	Ding et al., 2015 Zheng et al., 2013
Alcohol fermentation	Rhizopus orizae, R. microsporus, Absidia corymbifera, Amylomyces sp., S. cerevisiae, Pichia anomala, Candida tropicalis, Clavispora lusitanie, Pediococcus pentosaceus, L. plantarum, L. brevis, Weisella confuse, B. subtilis, Acetobacter orientalis, A. pasteurianus	Thanh et al., 2008
Olive fermentation	L. plantarum, Marinilactibacillus sp., Propionibacterium olivae, Alkalibacterium sp., Halolactobacillus sp., Pediococcus acidilactici	Lucena-Padros et al., 2015
Leek fermentation	Leuconostoc mesenteroides, L. sakei, L. plantarum, L. brevis, L. parabrevis	Wouters et al., 2013
Palm wine	S. cerevisiae, S. ludwigii, Zygosacharomyces bailii, Hanseniospora uvarum, Candida parasilopsis, C. fermentati, Pichia fermentans	Stringini et al., 2009
RAPD-PCR		
Feta cheese Wine fermentation Olive fermentation	Lactobacillus sp. Oenococcus oeni, Leuconostoc mesenteroides L. pentosus, L. paracollinoides, L. rapi, Pediococcus sp., Staphylococcus sp., Candida thaimueangensis, S. cerevisiae, Hanseniospora sp.	Plessas et al., 2017 Ruiz et al., 2008 Lucena-Padros et al., 2014
Fermented sausage	L. sakei, L. plantarum, Weisella hellenica, Leuconostoc mesenteroides, S. xylosus, S.saprophyticus, S. pasteuri, S. epidermis, S. simulans, S. equorum	Tremonte et al., 2017 Pisacone et al., 2015
Eggplant Fermented beverage	L. brevis, L. plantarum, L. pentosus, L. fermentum Weissella sp., Pediococcus sp., Lactococcus sp., Lactobacillus sp.	Sesena et al., 2005 Väkeväinen et al., 2018
Italian sausage	Staphylococcus xylosus	Iacumin et al., 2006
Dairy	L. casei, L. paracasei, L. plantarum, L. rhamnosus, L. helveticus, L. fermentatum, L. brevis, S. thermophilus, Lactococcus lactis	Rossetti et al., 2005
Sourdough fermentation	 Inermopnius, Lactococcus tacus Inermopnius, Lactococcus tacus Inermotive de la construcción de la constancia de la const	Rizzelo et al., 2014
qPCR		
Dairy	Streptococcus thermophilus, Lactococcus lactis	Pega et al., 2017
Wine Cocoa bean	A. niger, Botrytis cinerea, Hanseniospora uvarum, S. cerevisiae, Candida stellata L. sakei, L. plantarum, Weissella hellenica, Leuconstoc mesenteroides	Andorra et al., 2010 Schewendiman et al.,
Sourdough	L. curvatus, L. brevis, L. pontis, Weissella sp., Pediococcus pentosaceus, L. plantarum, S. cerevisiae	2017 Michel et al., 2016 Lin et al., 2014 Sienwerts et al., 2018
Wine	Gluconobacter sp., Acetobacter sp., Gluconoacetobacter sp., Bifidobacterium sp., Hanseniaspora sp., Sacharomyces sp., Candida sp.	Portillo et al., 2016 Andorra et al., 2011
Spanish sausage Cheese milk	Staphylococcus equorum, L. sakei Propionibacterium freudenreichii, P. thoenii, P. jensenii, P. acidipropionici	Fonseca et al., 2013 Turgay et al., 2018

		Tabel 1 (Continued)
White cheese	Saccharomyces cerevisiae, Enterococcus sp., L. brevis, L. curvatus	Kadiroglu et al., 2014 Ladero et al., 2010
Fish sauce	Virgibacillus halodentrificans, Tetragenococcus halophilus	Udomsil et al., 2010
Sau-PCR		
Wine fermentation Sausages	Saccharomyces cerevisiae Staphylococcus xylosus	Perrone et al., 2013 Iacumin et al., 2006
T-RFLP Wine fermentation	S. cerevisiae, H. uvarum, Pichia minuta, Sacharomycodes ludwigii, Candida zemplinina	Sun and Liu, 2014
PFGE Wine fermentation Youghurt	S. cerevisiae, H. uvarum, Pichia minuta, Sacharomycodes ludwigii, Candida zemplinina L. delbrueckii, S. thermophilus	Sun and Liu, 2014 Rademaker et al.,2006
Cells-qPCR Wine	B. bruxellensis, S. cerevisiae, Z. bailii, L. plantarum, Oenococcus oeni, A. aceti, Gluconobacter oxydans	Soares-Santos et al.,2017, 2018
ARDRA–ITS RFLP Sourdough Cocoa fermentation	L. sanfranciscensis, Candida milleri, S. cerevisiae B. subtilis, B. pumilus, B. sphaericus, B. cereus, B. thuringiensis, B. fusiformis	Palla et al., 2017 Ouattara et al., 2011
FISH Olive Wine	L. plantarum, L. paraplantarum, L. pentosus S. cerevisiae, Hanseniospora guilliermondii	Ercolini et al., 2006 Andorra et al., 2011
MS – PCR Food spoilage	L. plantarum, L. paraplantarum, L. pentosus	Dakal et al., 2018
PCR-RFLP Food spoilage	L. plantarum, L. paraplantarum, L. pentosus	Dakal et al., 2018
PMA – qPCR Wine	S. cerevisiae, B. bruxellensis, O. oeni, L. plantarum, Acetobacter paseurianus	Rizzotti et al., 2015
Box Sourdough	L. curvatus, L. brevis, L. pontis, Weissella sp., Pediococcus pentosaceus	Michel et al., 2016
Box – PCR Enzyme food	Bacillus coagulans, L. plantarum, L. oris, S. epidermis	Zhu et al., 2014
Flow cytometry Wine	S. cerevisiae, B. bruxellensis, Candida vini, L. plantarum, L. casei, L. brevis, O. oeni, Acetobacter sp., Gluconobacter sp., Gluconoacetobacter sp., S. cerevisiae, Hanseniospora guilliermondii	Longin et al., 2017 Andorra et al., 2011
Nested – PCR Shenqu	Pediococcus acidilactici, Rhizopus sp., Aspergillus oryzae, Enterobacter sp., Klebsiella sp.,	Lin et al., 2017
Soybean paste	Erwinia sp., Pantoea vagan Leuconostoc mesenteriodes, Tetragenococcus halophylus, E. faecium, B. subtilis, B. licheniformis, Mucor plumbeus, A. oryzae	Kim et al., 2009
Rep – PCR Italian sausage Cocoa bean	Staphylococcus xylosus S. cerevisiae, Candida ethanolica, L. fermentum, L. plantarum, Acetobacter pasteurianus, Acetobacter syzygii, Hanseniospora uvarum, Pichia manshurica	Iacumin et al., 2006 Visintin et al., 2016

Hanseniaspora uvarum, S. cerevisiae, Candida stellata in wine fermentation (Andorra et al., 2010; Andorra et al., 2011; Portillo et al., 2016), L. plantarum and L. fermentum in cocoa bean fermentation (Schwendimanet al., 2015), L curvatus, L. brevis, L. pontis, Weissella sp., Pediococcus pentosaceus in sourdough (Michel et al., 2016; Sienwerts et al., 2018), Staphylococcus equorum, L. sakei in Spanish sausage Chorizo (Fonseca et al., 2013), Propioni bacterium freudenreichii, P. thoenii, P. jensenii, P. acidipropionici in cheese milk (Turgay et al., 2018; Kadiroglu et al., 2014), *Virgibacillus halodenitrificans, Tetragenococcus halophilus* in fish sauce (Udomsil et al., 2016).

Sau-PCR technique is based on the digestion DNA with of genomic the restriction endonuclease Sau3AI subsequent and amplification with primers whose core sequence is based on the Sau3AI recognition site. This method has been used for investigation of the dominance behaviour of Saccharomyces cerevisiae strains during wine fermentation (Perrone et al., 2013) and

characterization of *Staphylococcus xylosus* isolated from naturally fermented Italian sausages (Iacumin et al., 2006)

Terminal-Restriction Fragment Length Polymorphism (T-RFLP) is a method that analyzes variation among 16s rRNA genes from different bacteria, being based on the restriction endonuclease digestion of end-labeled fluorescent PCR products. Restriction fragments are separated by gel electrophoresis and the fluorescence signal is quantified. Distinct patterns are obtained as each fragment represents each species present. This method has been used in investigation of veasts species: Saccharomyces sp., Hanseniospora uvarum. Pichia minuta. Saccharomycodes ludwigii. Candida zemplining in wine fermentation (Sun and Liu, 2014) and for assessment of L. delbrueckii, S. thermophiles in youghurt (Rademaker et al., 2006).

Pulsed-Field Gel Electrophoresis (PFGE) is a highly discriminative molecular typing technique that is used in worldwide. PFGE is based upon the variable migration of large DNA restriction fragments in an electrical field of alternating polarity. By comparing the DNA fingerprints of two isolates, it can be investigated if they belong to the same strain or if they are genetically unrelated. According to Ruiz et al., 2008, PFGE method has been used to study intraspecific genetic diversity of **Oenococcus** oeni and Leuconostoc mesenteroides from malolactic fermentation of Cencibel wines. Oguntovinbo et al., 2010, studied dynamics of L. plantarum, l. fermentum, L. pentosus, L. casei, L. acidophilus during the spontaneous fermentation of cassava dough.

Cells-qPCR is a quantitative PCR assay and has been developed for rapid detection and quantification of yeasts, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) from grape must and wine that does not require DNA extraction. This method is robust, reliable, fast and specific method to detect and quantify different bacteria and veasts. like В. bruxellensis. S. cerevisiae, L. plantarum, Oenococcus Acetobacter oeni, aceti,

Gluconobacter oxydans, Zygosaccharomyces bailii, overcoming the presence of inhibitors like polyphenols and ethanol (Soares-Santos et al., 2017; Soares-Santos et al., 2018).

Amplified Ribosomal DNA Restriction Analysis (ARDRA) is a tool to study microbial diversity that relies on DNA polymorphism. Fragments of 16S rDNA gene, obtained by applying either universal or genus-specific primer sets, are amplified and digested by restriction endonucleases. followed hv separation of the resulting fragments on highdensity agarose or acrylamide gels. The emerging profiles are then used either to cluster the community into genotypic groups or for strain typing. ARDRA method has been used to Lactobacillus describe sanfranciscensis. Candida milleri, S. cerevisiae, in sourdough (Palla et al., 2017), B. subtilis, B. pumilus, B. sphaericus, B. cereus, B. thuringiensis, B. fusiformis has been isolated and identified from cocoa fermentation (Ouattara et al., 2011).

Flow Cytometry (FCM) is a rapid and sensitive technique that measures each cell size. FCM technique is based on sorting of the stained cells through a process called hydrodynamic focusing in a narrow steam, the cells are then hit with a laser beam and florescence emitted is detected by several photomultipliers. This method has been used to quantify pathogen, spoilage microorganisms and microorganisms of interest such as S. cerevisiae, B. bruxellensis, Candida vini, L. plantarum. L. casei. L. brevis. O. oeni. Acetobacter Gluconobacter sp., sp., Gluconoacetobacter sp. from wine (Longin et al., 2017; Andorra et al., 2011).

The Fluorescence in Situ Hybridization (FISH) with rRNA targeted oligonucleotide probes has been developed over the last years, a number of variants of this basic technique have been described until now. Microbial cells are treated with appropriate chemical fixative and then immobilized onto microscopic slides. Probes used are 15-20 nucleotides in length and are labeled covalently at the 5'-end with a florescent dye. After hybridization and washing, specifically stained cells are observed by epiflourescence microscopy. This method

has been used for detection of *L. plantarum, L. paraplantarum, L. pentosus, L. acidophilus, L. brevis, L. casei, L. curvatus, L. fermentum, L. paracasei, L. reuteri, L. rhamnosus in natural fermentation of olives (Ercolini et al., 2006), Analysis of Saccharomyces cerevisiae and Hanseniaspora guilliermondii during wine fermentation (Andorra et al., 2011).*

CONCLUSIONS

Phenotypic and genotypic analysis can contribute to characterize any microbe at species and strain level; this can be obtained by the combination of different identification and classification procedures and then to discrimination by molecular techniques.

The most used method is PCR-DGGE, followed by q-PCR and RAPD-PCR among genotyping methods, being a very useful tool for detection of probiotic bacteria, spoilage bacteria and pathogens bacteria during fermentation processes, the other molecular methods being less used.

It is necessary to expand possibilities to investigate microbial diversity within natural populations by analysing less conserved genes. Culture-independent methods can not completely avoid biases from estimating microbial diversity introduced by maceration and blending of the food sample, dilution of the homogenate, plating of dilution onto agar media and isolation and identification of colonies.

REFERENCES

- Andorra, I., Monteiro, M., Esteve-Zarzoso, B., Albergaria, H., Mas, A., 2011. Analysis and direct quantification of *Saccharomyces cerevisiae* and *Hanseniaspora guilliermondii* populations during alcoholic fermentation by fluorescence *in situ* hybridization, flow cytometry and quantitative PCR, Food Microbiology 28, 1483-1491.
- Andorra, I., Landi, S., Mas, A., Esteve-Zarzoso, B., Guillamon, J., 2010. Effect of fermentation temperature on microbial population evolution using culture-independent and dependent techniques, Food Research International 43, 773-779.
- Aquilanti, L., Santarelli, S., Silvestri, G., Osimani, A., Petruzzelli, A., Clementi, F., 2007. The microbial ecology of a typical Italian salami during its natural fermentation, International Journal of Food Microbiology 120, 136-145.

- Cocolin L., Alessandria V., Dolci P., Gorra R., Rantsiou K., 2013. Culture independent methods to assess the diversity and dynamics of microbiota during food fermentation. Inte. J. of Food Microbiology, 167 (1), 29-43.
- Dakal, T., C., Solieri, L., Giudici, P., 2018. Evaluation of fingerprinting techniques to assess genotype variation among *Zygosaccharomyces* strains, Food Microbiology 72, 135-145.
- Danilović, B., Joković, N., Petrović, L., Velgović, K., Tolinački, M., Savić, D., 2011. The characterisation of lactic acid bacteria during the fermentation of an artisan Serbian sausage (Petrovská Klobása), Meat Science 88, 668-674.
- Ding, X., Wu, C., Hunag, J., Zhou, R., 2015. Interphase microbial community characteristics in the fermentation cellar of Chinese Luzhou-flavor liquor determined by PLFA and DGGE profiles, Food Researche International 72, 16-24.
- Donelli, G., Vuotto, C., Mastromarino, P., 2013. Phenotyping and genotyping are both essential to identify and classify a probiotic microorganism, Microbial ecology in health & disease, 24, 20105.
- Ercolini, D., Villani, F., Aponte, M., Mauriello, G., 2006. Flourescence in situ hybridization detection of *Lactobacillus plantarum* group in olives to be used in natural fermentations, International Journal of Food Microbiolgy 112, 291-296.
- Fonseca, S., Cachaldora, A., Gomez, M., Franco, I., Carballo, J., 2013. Monitoring the bacterial population dynamics during the ripening of Galician chorizo, a traditional dry fermented Spanish sausage, Food Microbiology 33, 77-84.
- Giraffa, G., 2004. Studying the dynamics of microbial populations during food fermentation, FEMS. Microbiol. Rev. 28, 251-260.
- Greppi, A., Ferrocino, I., La Storia, A., Rantsiou, K., Ercolini, D., Cocolin, L., 2015. Monitoring of the microbiota of fermented sausages by culture independent rRNA-based approaches, International Journal of Food Microbiology 212, 67-75.
- Hilmi Hanan, T.A., Surakka, A., Apajalahti, J., Saris, P.E.J., 2007. Identification of the most abundant *Lactobacillus* species in the crop of 1- and 5- week old broiler chickens, Appl. Envron. Microbiol. 73, 7867-7873.
- Iacumin, L., Comi, G., Cantoni, C., Cocolin, L., 2006. Molecular and technological characterization of *Staphylococcus xylosus* isolated from naturally fermented Italian sausages by RAPD, Rep-PCR and Sau-PCR analysis, Meat science 74, 281-288.
- Kadiroglu, P., Korel, F., Ceylan, C., 2014. Quantification of *Staphylococcus aureus* in white cheese by the improved DNA extraction strategy combinedwith TaqMan and LNA probe-based qPCR, Journal of Microbiological Methods 105, 92-97.
- Kim, T., W., Lee, J., H., Kim, S., E., Park, M., H., Chang, H., C., Kim, H., Y., 2009. Analysis of microbial communities in Doenjang, a Korean fermented soybean paste, using nested-PCRdenaturing gradient gel electrophoresis, international Journal of Food Microbiology 131, 265-271.

- Ladero, V., Fernandez, M., Cuesta, I., Alvarez, M., A., 2010. Quantitative detection and identification of tyramine-producing enterococci and lactobacilli in cheese by multiplex qPCR, Food Microbiology 27, 933-939.
- Lefeber, T., Gobert, W., Vrancken, G., Camu, N., De Vuyst, L., 2011. Dynamics and species diversity of communities of lactic acid bacteria and acetic acid bacteria during spontaneous cocoa bean fermentation in vessels, Food Microbiolgy 28, 457-464.
- Lin, X., Gänzle, M., G., 2014. Quantitative highresolution melting PCR analysis for monitoring of fermentation microbiota in sourdough, International Journal of Food Microbiology 186, 42-48.
- Liu, T., Jia, T., Chen J., Liu, X., Zhao, M., Liu, P., 2017. Analysis of microbial diversity in Shenqu with different fermentation times by PCR-DGGE, Brazilian Journal of Microbiology 48, 246-250.
- Longin, C., Petitgonnet C., Guilloux-Benatier, M., Rousseaux, S., 2017. Application of flow cytometry to wine microorganisms, Food Microbiology 62, 221-231.
- Lucena-Padrós, H., Jimènez E., Maldonado-Barragán, A., Rodriguez, I., M., Ruiz-Barba, J., L., 2015. PCR-DGGE assessment of the bacterial diversity in Spanish-style green table-olive fermentations, International Journal of Food Microbiology 205, 47-53.
- Lucena-Padrós, H., Caballero-Guerrero, B., Maldonado-Barragán, A., Ruiz-Barba, J., L., 2014. Genetic diversity and dynamics of bacterial and yeast strain associated to Spanish-style green table-olive fermentation in large manufacturing companies, Int.Journal of Food Microbiology 190, 72-78.
- Lucena-Padrós, H., Caballero-Guerrero, B., Maldonado-Barragán, A., Ruiz-Barba, J., L., 2014. Microbial diversity and dynamics of Spanish-style green tableolive fermentations in large manufacturing companies through culture dependent techniques, Food Microbiology 42, 154-165.
- Madoroba, E., Steenkamp, E., T., Theron, J., Scheirlinck, I., 2011. Diversity and dynamics of bacterial populations during spontaneous sorghum fermentations used to produce ting, a South African food, System. and Applied Microbiology 34, 227-234.
- Mao, I., Wei, B., Y., Teng, J., W., Huang, L., Xia, N., 2017. Analyses of fungal community by Illumina Miseq platforms and characterization of *Eurotium* species on Liupao tea, a distinctive post-fermented tea from China, Food Researche international 99, 641-649
- Mastromarino, P., Brigidi, P., Macchia S., Maggi, L., Pirovano, F., Trinchieri, V., 2002. Characterization and selection of vaginal *Lactobacillus* strains for the preparation of vaginal tablets, J. Appl. Microbiol. 93, 884-893.
- Matei B., Salzat J., Diguta C.F., Luta G., Cornea C.P., Luta G., Utoiu E.R., Matei F., 2018. Lactic acid bacteria isolated from Kombucha as potential probiotics. Rom. Biotech. Letters, 23 (3), p.13592-13598.

- Michel, E., Monfort, C., Deffrasnes, M., Guezenec, S., Lhomme, E., Barret, M., Sicard, D., Dousset, X., Onno, B., 2016. Characterization of relative abundance of lactic acid bacteria species in French organic sourdough by cultural, qPCR and Miseq high-throughput sequencing methods, International Journal of Food Microbiology 239, 35-43.
- Miller, L.T., 1982. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids, J. Clin. Microbiol. 16, 584-586.
- Nam, Y., D., Lee, S., Y., Lim, S., I., 2012. Microbial community analysis of Korean soybean pastes by next-generation sequencing, International Journal of Food Microbiology 155, 36-42.
- Nomura, M., Kimoto, H., Someya, Y., Suzuki, I., 1999. Novel characteristic for distinguishing *Lactococcus lactis* subsp. *lactis* from subsp. *cremoris*, Int. J. Systematic Bacteriol. 49, 163-166.
- Oguntoyinbo, F., A., Dodd, C., E., R., 2010. Bacterial dynamics during the spontaneous fermentation of cassava dough in gari production, Food Control 21, 306-312.
- Ouattara, H., Reverchon, S., Niamke, S., L., Nasser, W., 2011. Molecular identification and pectate lyase production by *Bacillus* strains involved in cocoa fermentation, Food Microbiology 28, 1-8.
- Palla, M., Cristani, C., Giovanetti, M., Agnolucci, M., 2017. Identification and characterization of lactic acid bacteria and yeasts of PDO Tuscan bread sourdough by culture dependent and independent methods, International Journal of Food Microbiology 250, 19-26.
- Papalexandratou, Z., Vrancken, G., De Bruyne, K., Vandamme, P., De Vuyst, L., 2011. Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria, Food Microbiology 28, 1326-1338.
- Pega, J., Rizzo, S., Rosetti, L., Perez, C., D., Diaz, G., Descalzo, A., M., Nanni, M., 2017. Impact of extracellular nucleic acids from lactic acid bacteria on qPCR and RT-qPCR results in dairy matrices: Implications for definig molecular markers of cell integrity, LWT – Food Science and Technology 80, 416-422.
- Perez-Martin, F., Sesena, S., Fernandez-Gonzalez, M., Arevalo, M., Palop, M., L., 2014. Microbial communities in air and wine of a winery at two consecutive vintages, International Journal of Food Microbiology 190, 44-53.
- Perrone, B., Giacosa, S., Rolle, L., Cocolin, L., Rantsiou, K., 2013. Investigation of the dominance behavior of *Saccharomyces cerevisiae* strains during wine fermentation, International Journal of Food Microbiology 165, 156-162.
- Plessas, S., Nouska, C., Karapetsa, A., Kazakos, S., Alexopoulus, A., Mantzourani, I., Chondrou, P., Fournomiti, M., Galanis, A., Bezirtzoglou, E., 2017. Isolation, characterization and evaluation of the probiotic potential of a novel *Lactobacillus* strain isolated from Feta-type cheese, Food Chemistry 226, 102-108.

- Pisacane, V., Callegari, M., L., Puglisi, E., Dallolio, G., Rebechi, A., 2015. Microbial analyses of traditional Italian salami reveal microorganisms transfer from the natural casing to the meat matrix, International Journal of Food Microbiology 207, 57-65.
- Portillo, M., C., Mas, A., 2016. Analysis of microbial diversity and dynamics during wine fermentation of Grenache grape variety by high-throughput barcoding sequencing, LWT-Food Science and Technology 72, 317-321.
- Rademaker, J., L., W., Hoolwerf, J., D., Wagendorp, A., A., Giffel, M., C., 2006. Assessment of microbial population dynamics during yoghurt and hard cheese fermentation and ripening by DNA population fingerprinting, Int. Dairy Journal 16, 457-466.
- Rizzello, C., G., Calosso, M., Campanella, D., DeAngelis, M., Gobbetti, M., 2014. Use of sourdough fermentation and mixture of wheat, chickpea, lentil and bean flours for enhancing the nutritional, texture and sensory characteristics of white bread, international Journal of Food Microbiology 180, 78-87.
- Rizzotti, L., Levav, N., Fracchetti, F., Felis, G., E., Torianni, S., 2015. Effect of UV-C treatment on the microbial population of white and red wines, as revealed by conventional plating and PMA-qPCR methods, Food Control 42, 407-412.
- Rossetti, L., Giraffa, G., 2005. Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint database, Journal of Microbiological Methods 63, 135-144.
- Riuz, P., Izquierdo, P., M., Sesena, S., Palpo, M., L., 2008. Intraspecific genetic diversity of lactic acid bacteria from malolactic fermentation of Cencibel wines as derived from combined analysis of RAPD-PCR and PFGE patterns, Food Microbiol. 25, 942-948.
- Schwendimann, L., Kauf, P., Fieseler, L., Ganteiben-Demarchi, C., Schwenninger, S., M., 2015. Development of a quantitative PCR assay for rapid detection of *Lactobacillus plantarum* and *Lactobacillus fermentum* in cocoa bean fermentation, Journal of Microbiological Methods 115, 94-99.
- Sesena, S., Sanchez, I., Palop, L., 2005. Characterization of *Lactobacillus* strains and monitoring by RAPD-PCR in controlled fermentations of Almagro eggplants, International Journal of Food Microbiology 104, 325-335.
- Sieuwerts, S., Bron, P., A., Smid, E., J., 2018. Mutually stimulating interactions between lactic acid bacteria and *Saccharomyces cerevisiae* in sourdough fermentation, LWT-Food Science and Technology 90, 201-206.
- Silvestri, G., Santarelli, S., Aquilanti, L., Beccaceci, A., Osimani, A., Tonucci, F., Clementi, F., 2007. Investigation of the microbial ecology of Ciauscolo, a traditional Italian salami, by culture-dependent techniques and PCR-DGGE, Meat Science 77, 413-423.
- Soares-Santos, V., pardo, I., Ferrer, S., 2018. Improved detection and enumeration of yeasts in wine by CellsqPCR, LWT-Food Sci. and Technology 90, 90-97.

- Soares-Santos, V., pardo, I., Ferrer, S., 2017. Cells-qPCR as a direct quantitative PCR method to avoid microbial DNA extractions in grape musts and wines, Int. Journal of Food Microbiology 261, 25-34.
- Stringini, M., Comitini, F., Taccari, M., Ciani, M., 2009. Yeast diversity during tapping and fermentation of palm wine from Cameroon, Food Microb. 26, 415-420.
- Sun, Y., Liu, Y., 2014. Investigating of yeast species in wine fermentation using terminal restriction fragment length polymorphism method, Food Microbiology 38, 201-207.
- Suzuki, k., Goodfelow, M., O'Donell, A.G., 1993. Cell envelopes and classification, In: Goodfelow M, O'Donell AG editors, Handbook of new bacterial systematics, London:Academic Press, 195-250.
- Tannock, G.W., 1999. Probiotics: a critical review, Wymondham, UK, Horizon Scientific Press.
- Thanh, V., N., Mai, L., T., Tuan, D., A., 2008. Microbial diversity of traditional Vietnamese alcohol fermentation starters (banh men) as determined by PCR-mediated DGGE, International Journal of Food Microbiology 128, 268-273.
- Tremonte, P., Sorrentino, E., Pannella, G., Tipaldi, L., Sturchio, M., Masucci, A., Maiuro, L., Coppola, R., Succi, M., 2017. Detection of different microenvironments and *Lactobacillus sakei* biotypes in Ventricina, a traditional fermented sausage from central Italy, International Journal of Food Microbiology 242, 132-140.
- Turgay, M., Schaeren, W., Graber, H., U., Wagner, E., Amrein, R., Butikofer, U., Wechsler, D., 2018. A field study investigating the effectiveness of vat milk controls by qPCR for the prevention of undesired propionic acid fermentation in Sbrinz PDO cheese, International Dairy Journal 77, 80-88.
- Udomsil, N., Chen, S., Rodtong, S., Yongsawatdigul, J., 2016. Quantification of viable bacterial starter cultures of *Virgibacillus* sp. and *Tetragenococcus halophilus* in fish sauce fermentation by real-time quantitative PCR, Food Microbiology 57, 54-62.
- Väkeväinen, K., Valderrama, A., Espinosa, J., Centurion, D., Rizo, J., Reyes-Duarte, D., Diaz-Ruiz, G., von Wright, A., Elizaquivel, P., Esquivel, K., Simontaival, A., I., Aznar, R., Wacher, C., Plumed-Ferrer, C., 2018. Characterization of lactic acid bacteria recovered from atole agrio, a traditional Mexican fermented beverage, LWT-Food Science and Technology 88, 109-118.
- Vasquez, A., Jakobsson, T., Ahrne, S., Forsum, U., Mollin, G., 2002. Vaginal *Lactobacillus* flora of healthy Swedish women, J. Clin. Microbiol. 40, 2746-2749.
- Visintin, S., Alessandria, V., Valente, A., Dolci, P., Cocolin, L., 2016. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa, Int.Journal of Food Microbiology 216, 69-78.
- Yang, J., Cao, Y., Cai, Y., Terada, F., 2010. Natural population of lactic acid bacteria isolated from vegetable residues and silage fermentation, J. Dairy Sci. 93, 3136-3145.

- Zheng, J., Liang, R., Wu, C., Zhou, R., Liao, X., 2013. Characterization of microbial communities in strong aromatic liquor fermentation pit muds of different ages assessed by combined DGGE and PLFA analyses, Food Research International 54, 660-666
- Zhu, L., Xu, H., Zhang, Y., Fu, G., Wu, P., Q., Li, Y., 2014. BOX-PCR and PCR-DGGE analysis for bacterial diversity of a natural fermented functional food (Enzyme), Food Bioscience 5, 115-122.